Superconductor-based computer design and modeling tools

Masamitsu Tanaka¹, Teruo Tanimoto², and Koji Inoue² Nagoya University¹ and Kyushu University²

Outline

- Basic of SFQ Technology: Masamitsu Tanaka
- Impact of Practical Designs on Area/Power/Performance:Teruo Tanimoto
- Architectural Challenge on SFQ-based Computing: Koji Inoue

Basic of SFQ Technology

History of Superconductor Digital Circuits

1955 Cryotron

- Use thermal superconductor-normal transition.
- Bulky device. Slow.
- 1966 Latching logic
 - Use Josephson devices and voltage levels.
 - Fast operation up to I GHz a.c.

• 1976 Phase-mode / 1991 rapid single-flux-quantum (RSFQ) logic

- Use single flux quantum (SFQ) in a superconductor loop.
- Ultrafast (100+ GHz) & low power.
- 2010- Energy-efficient families & new devices
 - ERSFQ, adiabatic flux parametron, nanocryotron, π junctions, etc.

770-GHz TFF Chen et al., IEEE TAS 1999

4K-bit RAM Nagasawa et al., IEEE TAS 1995

4-bit MPU

ISSCC1988

Kotani et al.,

Cryotron ring oscillator Photo: Computer History Museum

ABC of SFQ: Fundamental

Propagation of SFQ Signal

After K. K. Likharev and V. K. Semenov IEEE Trans. Appl. Supercond. 1 (1991).

Impulse-shape voltage

SFQ Flip-flop

- A superconductor loop with large inductance can hold an SFQ.
- Clock signal triggers the stored SFQ and generates output.

SFQ Logic Gate (AND)

- Use "Clock" as a timing reference for synchronization.
- Every logic gate is clocked gate and has the latch function.

Superconductor Waveguide

After S. V. Polonsky et al, IEEE Trans. Appl. Supercond. 3 (1993) 2598.

- ✓ Release from recharge process
- ✓ Signal propagation at the speed of light
- ✓ Small dispersion
- ✓ Energy-efficient, small-jitter interconnects

Fabrication Process

• 3–10 layer process is under development in Japan, US, and China.

AIST Advanced Process, Japan 1-μm sq. JJ, Nb 9-layer + Mo

S. Nagasawa et al. IEICE E97-C (2014) 132-140.

32-GHz, 6.5-mW SFQ MPU 25,403 JJs, 4.1 x 5.3 mm²

K. Ishida et al., VLSI 2020

Difficulty in Timing Design

- At every gate, we must control timing carefully. We need splitters for fan-outs.
- Timing is fluctuated by bias voltage, thermal noise, fabrication spreads, etc.
- Wiring delay is comparable to gate delay. Speed of light is only ~100 μ m/ps.

Cell-Based Design & Timing Adjustment

- CONNECT: Standard cell library specialized for SFQ circuits
 - Clocked logic gates and special gates, such as non-destructive readout gate
 - Wiring element (pulse splitters, delay elements, passive transmission lines)

S. Yorozu et al., "A single flux quantum standard logic cell library," Physica C, vol. 378 (2002) 1471.

CONNECT Standard Cell

clk

Symbol

parameter CLK__CLK__1 = 9.8; parameter CLK__A__1 = 4.3; parameter B__CLK__1 = -2.7; parameter CLK__B__1 = 4.4; parameter A__CLK__1 = -2.7; :

parameter BV70 = 1.75;

parameter CLK C 1 = 12.1;

Timing parameters with bias dependence (Verilog)

b

3

clk/c

clk

Logical behavior (Verilog)

2

Schematic w/ extracted parameters for SPICE-base simulator

→ You can access area, timing, JJ count, bias current, etc.

Design Flow

Power Consumption in SFQ Circuits

Static power $(R_{\rm B})$ $P_{\text{static}} = V_{\text{B}}^{2} / R_{\text{B}} \approx 0.7 I_{\text{c}} V_{\text{B}} \qquad \sum \frac{V_{B}^{2}}{R_{\text{D}}} = 1.8 \,\mu\text{W}$

In typical D flip-flop:

Dynamic power (R_s) $P_{\text{dynamic}} = \alpha f I_c \Phi_0$

 $f\Phi_0 \sum \alpha_i I_{ci} = 36 \text{ nW}$

 α : switching activity *f*: operating frequency Φ_0 : flux quantum (= h/2e)

How to Reduce Power?

- Reduce currents trade-off to noise tolerance
 - Use small Josephson junctions (depends on fabrication process)
 - Use π-shifted Josephson junctions "half-flux-quantum logic" ^[1]
- Lower voltages
 - Use small R and large L"LR-bias SFQ" ^[2,3]
 - Drive by low voltages "LV-RSFQ" ^[4]
 - Use JJs for limiting currents "ERSFQ"^[5] / "eSFQ"^[6]
- Others: AC-powered circuits
 - RQL: reciprocal quantum logic ^[7]
 - AQFP: adiabatic quantum flux parametron ^[8]

[1] T. Kamiya *IEICE* E101-C (2018).
[2] A.V. Rylyakov *IEEE TAS* 7 (1997).
[3] N. Yoshikawa *SUST* 12 (1999).
[4] M. Tanaka *JJAP* 51 (2012).
[5] D.E. Kirichenko *IEEE TAS* 21 (2011).
[6] M.H. Volkmann *SUST* 26 (2013).
[7] Q.P. Herr *JAP* 109 (2011).
[8] Takeuchi *JAP* 115 (2014).

Energy-Efficient SFQ Circuits

LR-bias/LV-RSFQ

D. E. Kirichenko et al. *IEEE TAS* **21** (2011) 776.

N. Yoshikawa and Y. Kato *SUST* **12** (1999) 918. M. Tanaka et al. *JJAP* **51** (2012) 053102

Pros and Cons

	Pros	Cons
RSFQ	 Ultrafast operation beyond 100 GHz Clocked gates (inherit latch function) Well-established cell library 	 Large static power Large DC bias currents Challenging clock distribution
LV-RSFQ	Similar to RSFQ designPower reduction up to 1/10	Static power is still dominantMore complex timing design
ERSFQ	No static powerFrequency is almost same as RSFQ	 Smaller integration density (doubles JJ count and requires large inductors)
RQL	 No static power Use of small-amplitude AC currents that also play the role of clock signal 	 Difficulty in multi-phase RF design (power splitters, skew control, etc.) Scalability limit by magnetic couplings
AQFP	 Ultralow energy operation near physical limits (w/ use of reversible gates) Small-amplitude AC driven 	 Limited frequency due to adiabatic operation Limited wiring length (PTLs not available) Scalability limit by magnetic couplings

Chip Measurement

Impact of Practical Designs on Area/Power/Performance

What happens on SFQ circuit in practical

• Design policy for high perf. and process variation tolerance

- Gate-level pipelining: explain later from the architectural viewpoint
 - Feeds clock pulse to each gate to design as a synchronous logic
- Equivalent length wiring: next slide
 - Conservative approach but important for successful demonstration currently
- Area and power estimation model: mainly counting #JJs

Area	Power
o Each gate consists of a few JJs (3-4)	o Most JJs switch every cycle due to
o Wires	clock pulse
v PTL: clock tree and data path	o Estimation methodology is common
v JTL (=JJ): timing adjustment	among SFQ device family

Impact of equivalent length (timing) wiring

- Insert JTL (work as delay cell) to the shorter path (A)
 - Currently the most time consuming part of our custom layout by hand
- Effect and impact
 - contributes to achieve higher frequency by timing adjustment of pulse arrival from path (A) and (B)
 - Shortcoming is increase in #JJs, which impacts on both area and power consumption

The case for 4×4 -bit LV-RSFQ Multiplier

The case for 4×4 -bit LV-RSFQ Multiplier

The case for Bit-width Variable Adder

The case for Bit-width Variable Adder

Future directions of SFQ circuit design

- Fidelity improvement of fabrication
 - Relaxes the conservativeness (i.e., timing margin and adjustment)
 - Fabrications for production will make it mature (but much investment will be necessary actually)
- Computer assisted layout
 - Variation-aware design verification
 - Reduce human effort to wiring both clock tree and data path
- Asynchronous logic (similar to combinational logic in CMOS)
 - Potential for higher performance and #JJs reduction
 - Partly exploited already (OR operation by "merger")
 - Hard to verify the design (as for an asynchronous CMOS logic)

Architectural Challenge on SFQbased Computing

OLD Challenge in RSFQ-based Computer #1 ~ SFQ microprocessor designs @ 2003-2016 ~

OLD Challenge in RSFQ-based Computer #1 ~ SFQ microprocessor designs @ 2003-2016 ~

OLD Challenge in RSFQ-based Computer #2 ~ SFQ Reconfigurable Data-Path @ 2006-2012 ~

Large-Scale Reconfigurable Data-Path for SFQ : Architecture Level

SFQ circuit part

- 1K FPUs operate at 80 GHz
- Re-configurable operand network
- Much simple organization for SFQ design (No feedback loops)
- Make a good balance between "Parallel Exe. Vs. Sequential Exe."

Panel Discussion @ ISLPED 2008

OLD Challenge in RSFQ-based Computer #2 ~ SFQ Reconfigurable Data-Path @ 2006-2012 ~

N.Yoshikawa, "RSFQ Project in Japan," 5th FLUXONICS RSFQ workshop, 2008.

F. Mehdipour et al., "Mapping scientific applications on a large-scale data-path accelerator implemented by single-flux quantum (SFQ) circuits," DATE 2010.

OLD Challenge in RSFQ-based Computer #2 ~ SFQ Reconfigurable Data-Path @ 2006-2012 ~

What we learned...

- + Stream processing sounds suitable for SFQ logics (no feedback loops)
- Bit-Serial designs significantly degrade the computation performance
- Memory wall problem becomes critical
- Complex on-chip communications consume a lot of JJs

Revisiting Microarchitecture for RSFQ <u>Pitfall</u>

Bit-serial operation is suitable for RSFQ designs!

Our Approach

Bit-parallel operation + Gate-level deep pipelining

RECENT Challenges

```
[Our starting point]
"Hey Koji, you should chill your head
before dipping your chip in liquid helium at 4 kelvins!"
```


Selected as a featured paper

SilkRoadAward

ISLPED' 17 Design Contest Honorable Mention

(simulation)

37

8-bit Bit-Parallel ALU Design: ISLPED 2017

- ✓ Target frequency: 50 GHz
- ✓ Gate-level pipelining
- ✓ Functions: ADD, SUB, AND OR, XOR, NOR, etc.
- ✓ Data length: 8 bits

Based on Brent-Kung adder

- Minimum number of logic gates (w/o D flip-flops)
- Sparse wiring tracks
- Small fanouts (Max. 3)
- Maximum logic depth

R. Brent and H. Kung, IEEE Trans. Comput. G31 (1982) 260

It Works!

1.6 mW, 56 GHz 8-bit ALU ~35 TOPS/W

→Next design achieved 112TOPS/W

Youtube Movie https://www.youtube.com/watch?v=jZP7sXWHyZs

Sometimes...

48 GHz 5.6mW Multiplier: ISSCC 2019

4-bit Microprocessor: VLSI Symposium 2022

Sign Flag Reg. (SFR)³

4-bit Microprocessor: VLSI Symposium 2022

Area : 4.08 mm x 5.31 mm # JJs : 23,713 JJs

SuperNPU: MICRO 2022

RSFQ RDP vs. SuperNPU

				_
		SFQ-RDP	SuperNPU	Ifmap buffer PE array (64 x 384KB) (64 x 256) ↓ / ► M
	Application	HPC (MO)	Al Inference	
	Data Reuse (on- chip)	Low	High	B B C C C C C C C C C C C C C
	Datapath	Bit-Serial FP w/ course-grained pipelining	Bit-Parallel Int w/ gate-level pipelining	to to to ifmap buffer PE array off-chip mem.
ſ	On-chip network	Complex & Frexible	Simple & Fixed	Weight Buffer
	On-chip memory	Simple input- output buf	Simple & integrated buf	PE1 PE3 Ofmop Buffer NWUDnt PE0 PE2
er	Optimization mainly focused	DFG mapping and routing	Microarchitecture	On-chip Clock Generator (CG)

ADD

·-+-',

Series of our RSFQ design and micrographs of fabricated chips

Fabricated Chip	Purpose	Frequency [GHz]	Power [mW]	Efficiency [TOPS/W]	#of JJs	Year
1: 8-bit ALU	First demo. of gate-level pipeline	56	1.6	40	4,846	2017
2: 8-bit array-type multiplier	large-scale circuit design	48	5.6	8.5	20,251	2018
3: low voltage 8-bit ALU	0.5mV low-voltage operation	30	0.276	109	7,451	2019
4: low-voltage 4-bit multiplier	large-scale low-voltage operation	51	0.134	381	4,498	2019
5: 4-bit microprocessor	large-scale datapath	32	6.5	2.5	25,403	2019
6: low-voltage 4-bit MAC	basic function for AI acceleration	38	0.366	104	9,739	2020
7: 2x2 systolic PE array	prototype of SuperNPU	34	0.711	382	9,263	2021

State-of-the-art Designs

Comparison of the second secon	Types	Instruction	Tested components
		ADD	IF, EXE
	Arithmetic	SUB	IF, EXE
	instruction	INC	IF, EXE
		DEC	IF, EXE
		SKNE	IF, EXE
MEM	Conditional-branch instruction	SKLT	IF, EXE
		JMP	IF
	Memory-access	LW	IF, EXE, MEN
CG BLOSSOM ← 1 mm	instruction	SW	IF, EXE, MEN

>100 GHz Bit-parallel Adder

Frequency (GHz)

64.8

62.9

64.8

64.8

57.2

57.2

60.8

78.2

71.9

32,712 JJs, 5.8 x 6.0 mm²

57.2GHz II.2mW 8-bit General Purpose Superconductor Microprocessor with Dual-Clocking Scheme (ASSCC 2022)

Conclusions ~ SFQ-based computing is still at an early stage! ~

Significant potential, but a lot of issues that computer architects would solve!